Telegram Group & Telegram Channel
Как параметризовать алгоритм обучения?

По всей видимости, мне нужно более понятно раскрыть эту тему, поскольку один из постов выше не вызвал никакого обсуждения, хотя, мне кажется, тема-то очень важная и интересная.

Итак, представим, что у нас есть система, обучающаяся чему-либо, например, классификации картинок. Чтобы оптимизировать обучаемость системы, нам нужно какое-то пространство для оптимизации, в котором мы будем изменять наши параметры в поиске лучшего алгоритма.

Самый известный способ параметризовать такой алгоритм - это программа на питоне, задающая архитектуру нейросети, трейнлуп, подсчёт ошибки и так далее. Оптимизацию в этом пространстве проводит человек почти вручную в рамках технологического прогресса. У этого есть 2 минуса:
1) Человечество - не самый лучший оптимизатор. Представьте, как если бы оно пыталось написать программу на питоне, которая берёт картинку и классифицирует по классам кошка/собака, без нейросетей.
2) Пространство "параметров" слишком структурировано. Человеческий интеллект задаёт ограничение на пространство алгоритмов, и то, что алгоритм состоит из длинной последовательности дискретных инструкций, в которой почти любая ошибка приводит к полной катастрофе, сильно затрудняет нам его оптимизацию автоматическими алгоритмами (например, генетическими). Иногда удаётся оптимизировать короткие программы, используя безумные ресурсы, как, например, в AutoMLZero, про который я писал пост.

Альтернативный способ параметризовать обучение системы - это, конечно же, ДНК. В нём закодировано поведение элементарной частицы, её деление, взаимодействие со своими копиями. Тот факт, что каждый кусочек ДНК влияет в разной степени на всю систему, не обязательно вызывая полный крах, и позволил эволюции оптимизировать адаптируемость человека к внешним вызовам, т.е. в том числе интеллект.

Как же я был приятно удивлён, когда обнаружил, что я не одинок в этих рассуждениях! Я нашёл статью, в которой авторы полностью переизобретают нейросети, не побоюсь этой фразы, и реально достигают успеха в мета-обучении. Об этом в следующем посте.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/82
Create:
Last Update:

Как параметризовать алгоритм обучения?

По всей видимости, мне нужно более понятно раскрыть эту тему, поскольку один из постов выше не вызвал никакого обсуждения, хотя, мне кажется, тема-то очень важная и интересная.

Итак, представим, что у нас есть система, обучающаяся чему-либо, например, классификации картинок. Чтобы оптимизировать обучаемость системы, нам нужно какое-то пространство для оптимизации, в котором мы будем изменять наши параметры в поиске лучшего алгоритма.

Самый известный способ параметризовать такой алгоритм - это программа на питоне, задающая архитектуру нейросети, трейнлуп, подсчёт ошибки и так далее. Оптимизацию в этом пространстве проводит человек почти вручную в рамках технологического прогресса. У этого есть 2 минуса:
1) Человечество - не самый лучший оптимизатор. Представьте, как если бы оно пыталось написать программу на питоне, которая берёт картинку и классифицирует по классам кошка/собака, без нейросетей.
2) Пространство "параметров" слишком структурировано. Человеческий интеллект задаёт ограничение на пространство алгоритмов, и то, что алгоритм состоит из длинной последовательности дискретных инструкций, в которой почти любая ошибка приводит к полной катастрофе, сильно затрудняет нам его оптимизацию автоматическими алгоритмами (например, генетическими). Иногда удаётся оптимизировать короткие программы, используя безумные ресурсы, как, например, в AutoMLZero, про который я писал пост.

Альтернативный способ параметризовать обучение системы - это, конечно же, ДНК. В нём закодировано поведение элементарной частицы, её деление, взаимодействие со своими копиями. Тот факт, что каждый кусочек ДНК влияет в разной степени на всю систему, не обязательно вызывая полный крах, и позволил эволюции оптимизировать адаптируемость человека к внешним вызовам, т.е. в том числе интеллект.

Как же я был приятно удивлён, когда обнаружил, что я не одинок в этих рассуждениях! Я нашёл статью, в которой авторы полностью переизобретают нейросети, не побоюсь этой фразы, и реально достигают успеха в мета-обучении. Об этом в следующем посте.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/82

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Knowledge Accumulator from ua


Telegram Knowledge Accumulator
FROM USA